

LOCTITE 3616

Safety Data Sheet according to (EC) No 1907/2006 as amended

Page 1 of 23

SDS No.: 153527 V003.0

Revision: 31.01.2023

printing date: 31.01.2023

Replaces version from: 13.12.2022

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

LOCTITE 3616

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use: Epoxy adhesive

1.3. Details of the supplier of the safety data sheet

Henkel AG & Co. KGaA

Henkelstr. 67

40589 Düsseldorf

Germany

Phone: +49 211 797 0

SDSinfo.Adhesive@henkel.com

For Safety Data Sheet updates please visit our website https://mysds.henkel.com/index.html#/appSelection or www.henkel-adhesives.com.

1.4. Emergency telephone number

The Henkel information service also provides an around-the-clock telephone service on phone no.+49-(0)211-797-3350 for exceptional cases.

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (CLP):

Skin irritation Category 2

H315 Causes skin irritation.

Serious eye irritation Category 2

H319 Causes serious eye irritation.

Skin sensitizer Category 1

H317 May cause an allergic skin reaction.

Germ cell mutagenicity Category 2

H341 Suspected of causing genetic defects.

Chronic hazards to the aquatic environment Category 2

H411 Toxic to aquatic life with long lasting effects.

2.2. Label elements

Label elements (CLP):

Contains

reaction product: bisphenol-A-(epichlorhydrin); epoxy resin (number average molecular weight ≤700)

Neodecanoic acid, oxiranylmethyl ester RP Bisphenol F-epichlorohydrin resin, MW<=700 2,2'-[methylenebis(p-phenyleneoxymethylene)]bisoxirane

4,4'-Isopropylidenediphenol

 $2,2'\hbox{-}[(1\hbox{-}Methylethylidene)bis (4,1\hbox{-}phenylene oxymethylene)] bis oxirane$

Signal word:	Warning
Hazard statement:	H315 Causes skin irritation.
Hazard statement:	H317 May cause an allergic skin reaction.
	H319 Causes serious eye irritation.
	H341 Suspected of causing genetic defects.
	H411 Toxic to aquatic life with long lasting effects.
Precautionary statement:	P273 Avoid release to the environment.
Prevention	P280 Wear protective gloves/protective clothing.
Precautionary statement:	P302+P352 IF ON SKIN: Wash with plenty of soap and water.
Response	P333+P313 If skin irritation or rash occurs: Get medical advice/attention.
	P337+P313 If eye irritation persists: Get medical advice/attention.

2.3. Other hazards

None if used properly.

Following substances are present in a concentration \geq the concentration limit for depiction in Section 3 and fulfill the criteria for PBT/vPvB, or were identified as endocrine disruptor (ED):

4,4'-Isopropylidenediphenol	ED
80-05-7	

SECTION 3: Composition/information on ingredients

3.2. Mixtures

Declaration of the ingredients according to CLP (EC) No 1272/2008:

Hazardous components CAS-No. EC Number REACH-Reg No.	Concentration	Classification	Specific Conc. Limits, M- factors and ATEs	Add. Information
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	25- 50 %	Skin Irrit. 2, H315 Skin Sens. 1, H317 Aquatic Chronic 2, H411 Eye Irrit. 2, H319	Skin Irrit. 2; H315; C >= 5 % Eye Irrit. 2; H319; C >= 5 %	
Neodecanoic acid, oxiranylmethyl ester 26761-45-5 247-979-2 01-2119431597-33	5-< 10 %	Skin Sens. 1A, H317 Muta. 2, H341 Aquatic Chronic 2, H411		
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]bisoxir ane 1675-54-3 216-823-5 01-2119456619-26	1-< 5 %	Aquatic Chronic 2, H411 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317	Eye Irrit. 2; H319; C >= 5 % Skin Irrit. 2; H315; C >= 5 %	
RP Bisphenol F-epichlorohydrin resin, MW<=700 28064-14-4	1-< 5 %	Skin Irrit. 2, H315 Skin Sens. 1A, H317 Eye Irrit. 2, H319 Aquatic Chronic 2, H411	Skin Irrit. 2; H315; C >= 5 % Eye Irrit. 2; H319; C >= 5 %	
2,2'-[methylenebis(p- phenyleneoxymethylene)]bisoxir ane 2095-03-6 218-257-4	0,1-< 1 %	Aquatic Chronic 2, H411 Skin Irrit. 2, H315 Skin Sens. 1, H317 Eye Irrit. 2, H319		
4,4'-Isopropylidenediphenol 80-05-7 201-245-8 01-2119457856-23	0,1-< 0,3 %	Eye Dam. 1, H318 Skin Sens. 1, H317 STOT SE 3, H335 Repr. 1B, H360F Aquatic Acute 1, H400 Aquatic Chronic 1, H410	M acute = 1 M chronic = 10 ===== oral:ATE = 2.500 mg/kg	SVHC ED EU OEL

For full text of the H - statements and other abbreviations see section 16 "Other information". Substances without classification may have community workplace exposure limits available.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Move to fresh air. If symptoms persist, seek medical advice.

Skin contact:

Rinse with running water and soap.

Obtain medical attention if irritation persists.

Eye contact:

Rinse immediately with plenty of running water (for 10 minutes), seek medical attention from a specialist.

Ingestion:

Rinse mouth, drink 1-2 glasses of water, do not induce vomiting, consult a doctor.

4.2. Most important symptoms and effects, both acute and delayed

EYE: Irritation, conjunctivitis.

SKIN: Redness, inflammation.

SKIN: Rash, Urticaria.

4.3. Indication of any immediate medical attention and special treatment needed

See section: Description of first aid measures

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media:

water, carbon dioxide, foam, powder

Extinguishing media which must not be used for safety reasons:

High pressure waterjet

5.2. Special hazards arising from the substance or mixture

In the event of a fire, carbon monoxide (CO), carbon dioxide (CO2) and nitrogen oxides (NOx) can be released.

5.3. Advice for firefighters

Wear self-contained breathing apparatus and full protective clothing, such as turn-out gear.

Additional information:

In case of fire, keep containers cool with water spray.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Avoid contact with skin and eyes.

Wear protective equipment.

Ensure adequate ventilation.

6.2. Environmental precautions

Do not empty into drains / surface water / ground water.

6.3. Methods and material for containment and cleaning up

Dispose of contaminated material as waste according to Section 13.

For small spills wipe up with paper towel and place in container for disposal.

For large spills absorb onto inert absorbent material and place in sealed container for disposal.

6.4. Reference to other sections

See advice in section 8

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid skin and eye contact.

See advice in section 8

Hygiene measures:

Wash hands before work breaks and after finishing work.

Do not eat, drink or smoke while working.

Good industrial hygiene practices should be observed.

7.2. Conditions for safe storage, including any incompatibilities

Refer to Technical Data Sheet

7.3. Specific end use(s)

Epoxy adhesive

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational Exposure Limits

Valid for Germany

Ingredient [Regulated substance]	ppm	mg/m ³	Value type	Short term exposure limit category / Remarks	Regulatory list
Limestone 1317-65-3			Short Term Exposure Classification:	Category II: substances with a resorptive effect.	TRGS 900
Limestone 1317-65-3		1,25	Exposure limit(s):	If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
Limestone 1317-65-3		10	Exposure limit(s):	If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
Silicon dioxide 112945-52-5		4	Exposure limit(s):	If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
Silicon dioxide 112945-52-5			Short Term Exposure Classification:	Category II: substances with a resorptive effect.	TRGS 900
Silicon dioxide 112945-52-5		10	Exposure limit(s):	If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
Silicon dioxide 112945-52-5		1,25	Exposure limit(s):	If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
4,4'-Isopropylidenediphenol 80-05-7 [BISPHENOL A (4,4'- ISOPROPYLIDENEDIPHENOL) (INHALABLE FRACTION)]		2	Time Weighted Average (TWA):	Indicative	ECTLV
4,4'-Isopropylidenediphenol 80-05-7			Short Term Exposure Classification:	Category I: substances for which the localized effect has an assigned OEL or for substances with a sensitizing effect in respiratory passages.	TRGS 900
4,4'-Isopropylidenediphenol 80-05-7		5	Exposure limit(s):	I If the AGW and BGW values are complied with, there should be no risk of reproductive damage (see Number 2.7).	TRGS 900
4,4'-Isopropylidenediphenol 80-05-7 [Bisphenol A; 4.4'-Isopropylidenedipher	nol]	2	Time Weighted Average (TWA):		EU OELIII

Predicted No-Effect Concentration (PNEC):

aqua (freshwater) aqua (marine water) sewage	period	mg/l 0,0035	ppm	mg/kg	others	
(freshwater) aqua (marine water)			• •		O LILLIO	İ
aqua (marine water)						
water)		mg/l				
		0,00035 mg/l				
sewage		50 mg/l				
treatment plant (STP)						
aqua		0,035 mg/l				
(intermittent releases)						
		0,006 mg/l				
· ´						
aqua (marine		0,001 mg/l				
water)						
sewage		10 mg/l				
				· · ·		
· ´						
` ,						
Soil				· · ·		
oral				11 mg/kg		
Freshwater -		0,018 mg/l				
		0,002 mg/l				
Air						no hazard identified
aqua (freshwater)		0,018 mg/l				
aqua (marine water)		0,018 mg/l				
		0,011 mg/l				
(intermittent		, ,				
sewage		320 mg/l				
treatment plant (STP)						
sediment				1,2 mg/kg		
sediment				0,24 mg/kg		
Soil Soil				3,7 mg/kg		
Air						no hazard identified
Predator						no potential for bioaccumulation
	(STP) aqua (intermittent releases) aqua (freshwater) sewage treatment plant (STP) sediment (freshwater) soil oral Freshwater - intermittent Marine water - intermittent Air aqua (freshwater) aqua (freshwater) sediment (marine water) Soil oral Freshwater - intermittent Air sediment (marine water) Soil Air Air	(STP) aqua (intermittent releases) aqua (freshwater) aqua (marine water) sewage treatment plant (STP) sediment (freshwater) sediment (marine water) Soil oral Freshwater - intermittent Marine water - intermittent Air aqua (freshwater) aqua (marine water) aqua (marine water) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater) aqua (intermittent sediment (STP) sediment (freshwater) sediment (freshwater) sediment (marine water) Soil Air	(STP) aqua (intermittent releases) aqua (freshwater) aqua (marine water) sewage treatment plant (STP) sediment (freshwater) Soil oral Freshwater - intermittent Air aqua (marine water) Air aqua (marine water) sewage treatment plant (STP) sediment (freshwater) aqua (marine water) aqua (marine water) sewage treatment plant (STP) sediment (freshwater) sediment (sTP) sediment (freshwater) sediment (freshwater) sediment (marine water) Soil Air	(STP) aqua (intermittent releases) aqua (freshwater) aqua (marine water) sewage treatment plant (STP) sediment (freshwater) Soil oral Freshwater - intermittent Air Air aqua (marine water) Air aqua (freshwater) aqua (freshwater) aqua (freshwater) aqua (marine water) aqua (marine water) aqua (freshwater) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater) sediment (marine water) Soil	(STP) aqua (intermittent releases) aqua (freshwater)	(STP) aqua (intermittent releases) aqua (freshwater)

Derived No-Effect Level (DNEL):

Name on list	Application Area	Route of Exposure	Health Effect	Exposure Time	Value	Remarks
2,3-Epoxypropyl neodecanoate 26761-45-5	Workers	dermal	Long term exposure - systemic effects		4,2 mg/kg	
2,3-Epoxypropyl neodecanoate 26761-45-5	Workers	Inhalation	Long term exposure - systemic effects		5,88 mg/m3	
2,3-Epoxypropyl neodecanoate 26761-45-5	General population	dermal	Long term exposure - systemic effects		2,5 mg/kg	
2,3-Epoxypropyl neodecanoate 26761-45-5	General population	Inhalation	Long term exposure - systemic effects		4 mg/m3	
2,3-Epoxypropyl neodecanoate 26761-45-5	Workers	Inhalation	Acute/short term exposure - systemic effects		11,76 mg/m3	
2,2'-[(1-Methylethylidene)bis(4,1- phenyleneoxymethylene)]bisoxirane 1675-54-3	Workers	dermal	Long term exposure - systemic effects		0,75 mg/kg	no hazard identified
2,2'-[(1-Methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane 1675-54-3	Workers	Inhalation	Long term exposure - systemic effects		4,93 mg/m3	no hazard identified
2,2'-[(1-Methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane 1675-54-3	General population	dermal	Long term exposure - systemic effects		0,0893 mg/kg	no hazard identified
2,2'-[(1-Methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane 1675-54-3	General population	oral	Long term exposure - systemic effects		0,5 mg/kg	no hazard identified
2,2'-[(1-Methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane 1675-54-3	General population	inhalation	Long term exposure - systemic effects		0,87 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	dermal	Acute/short term exposure - systemic effects		0,031 mg/kg	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	dermal	Long term exposure - systemic effects		0,031 mg/kg	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	Inhalation	Acute/short term exposure - systemic effects		2 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	Inhalation	Long term exposure - systemic effects		2 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	dermal	Long term exposure - systemic effects		0,002 mg/kg	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	Inhalation	Long term exposure - systemic effects		1 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	inhalation	Long term exposure - local effects		2 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	Workers	inhalation	Acute/short term exposure - local effects		2 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	inhalation	Acute/short term exposure - systemic effects		1 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	inhalation	Long term exposure - local effects		1 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	inhalation	Acute/short term exposure - local effects		1 mg/m3	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	dermal	Acute/short term exposure - systemic effects		0,002 mg/kg	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	oral	Long term exposure - systemic effects		0,004 mg/kg	no hazard identified
4,4'-Isopropylidenediphenol 80-05-7	General population	oral	Acute/short term exposure -		0,004 mg/kg	no hazard identified

systemic effects

Biological Exposure Indices:

None

8.2. Exposure controls:

Engineering controls:

Ensure good ventilation/extraction.

Respiratory protection:

Ensure adequate ventilation.

An approved mask or respirator fitted with an organic vapour cartridge should be worn if the product is used in a poorly

ventilated area

Filter type: A (EN 14387)

Hand protection:

Chemical-resistant protective gloves (EN 374).

Suitable materials for short-term contact or splashes (recommended: at least protection index 2, corresponding to > 30 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

Suitable materials for longer, direct contact (recommended: protection index 6, corresponding to > 480 minutes permeation time

as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

This information is based on literature references and on information provided by glove manufacturers, or is derived by analogy with similar substances. Please note that in practice the working life of chemical-resistant protective gloves may be considerably shorter than the permeation time determined in accordance with EN 374 as a result of the many influencing factors (e.g. temperature). If signs of wear and tear are noticed then the gloves should be replaced.

Eye protection:

Safety glasses with sideshields or chemical safety goggles should be worn if there is a risk of splashing.

Protective eye equipment should conform to EN166.

Skin protection:

Wear suitable protective clothing.

Protective clothing should conform to EN 14605 for liquid splashes or to EN 13982 for dusts.

Advices to personal protection equipment:

The information provided on personal protective equipment is for guidance purposes only. A full risk assessment should be conducted prior to using this product to determine the appropriate personal protective equipment to suit local conditions. Personal protective equipment should conform to the relevant EN standard.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state liquid

Delivery form Currently under determination

Colour red Odor mild

Melting point Not applicable, Product is a liquid

 $\begin{array}{ll} \mbox{Initial boiling point} & > 148,9 \ ^{\circ}\mbox{C} \ (> 300 \ ^{\circ}\mbox{F}) \\ \mbox{Flammability} & \mbox{Not applicable} \end{array}$

Explosive limits Currently under determination

Flash point > 93 °C (> 199.4 °F); Tagliabue closed cup

Auto-ignition temperature Currently under determination

Decomposition temperature Not applicable, Substance/mixture is not self-reactive, no

organic peroxide and does not decompose under foreseen

conditions of use

pH Not determined

Viscosity (kinematic) Currently under determination

Solubility (qualitative) Insoluble

(Solvent: Water)

Partition coefficient: n-octanol/water Not applicable

Mixture

Vapour pressure 1,33 mbar
Density Not available.
Relative vapour density: Not determined

Particle characteristics Currently under determination

9.2. Other information

Other information not applicable for this product

SECTION 10: Stability and reactivity

10.1. Reactivity

Reacts with strong oxidants. Reaction with strong acids.

10.2. Chemical stability

Stable under recommended storage conditions.

10.3. Possibility of hazardous reactions

See section reactivity

10.4. Conditions to avoid

Stable under normal conditions of storage and use.

10.5. Incompatible materials

See section reactivity.

10.6. Hazardous decomposition products

carbon oxides.

SECTION 11: Toxicological information

11.1 Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute oral toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	LD50	> 2.000 mg/kg	rat	OECD Guideline 420 (Acute Oral Toxicity)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	LD50	> 2.000 mg/kg	rat	OECD Guideline 420 (Acute Oral Toxicity)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	LD50	> 2.000 mg/kg	rat	OECD Guideline 420 (Acute Oral Toxicity)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	LD50	> 5.000 mg/kg	rat	equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity)
2,2'-[methylenebis(p- phenyleneoxymethylene)] bisoxirane 2095-03-6	LD50	> 2.000 mg/kg	rat	OECD Guideline 420 (Acute Oral Toxicity)
4,4'- Isopropylidenediphenol 80-05-7	LD50	> 2.000 - < 5.000 mg/kg	rat	OECD Guideline 401 (Acute Oral Toxicity)
4,4'- Isopropylidenediphenol 80-05-7	Acute toxicity estimate (ATE)	2.500 mg/kg		Expert judgement

Acute dermal toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
reaction product:	LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
bisphenol-A-				
(epichlorhydrin); epoxy				
resin (number average				
molecular weight≤700)				
25068-38-6				
Neodecanoic acid,	LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
oxiranylmethyl ester				
26761-45-5				
2,2'-[(1-	LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
Methylethylidene)bis(4,1-				
phenyleneoxymethylene)]				
bisoxirane				
1675-54-3				
RP Bisphenol F-	LD50	> 2.000 mg/kg	rat	equivalent or similar to OECD Guideline 402 (Acute
epichlorohydrin resin,				Dermal Toxicity)
MW<=700				
28064-14-4				
2,2'-[methylenebis(p-	LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
phenyleneoxymethylene)]				
bisoxirane				
2095-03-6				
4,4'-	LD50	3.000 mg/kg	rabbit	not specified
Isopropylidenediphenol				
80-05-7				

Acute inhalative toxicity:

No data available.

Skin corrosion/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Exposure time	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	not irritating	4 h	rabbit	not specified
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	not irritating	4 h	rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	moderately irritating	24 h	rabbit	Draize Test
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	irritating	4 h	rabbit	equivalent or similar to OECD Guideline 404 (Acute Dermal Irritation / Corrosion)

Serious eye damage/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Exposure time	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	not irritating		rabbit	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	not irritating		rabbit	OECD Guideline 405 (Acute Eye Irritation / Corrosion)

${\bf Respiratory\ or\ skin\ sensitization:}$

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Test type	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	sensitising	Guinea pig maximisation test	guinea pig	Magnusson and Kligman Method
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	Sub-Category 1A (sensitising)	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
2,2'-[methylenebis(p- phenyleneoxymethylene)] bisoxirane 2095-03-6	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
4,4'- Isopropylidenediphenol 80-05-7	not sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 406 (Skin Sensitisation)

Germ cell mutagenicity:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Type of study / Route of administration	Metabolic activation / Exposure time	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 472 (Genetic Toxicology: Escherichia coli, Reverse Mutation Assay)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	negative	in vitro mammalian chromosome aberration test	with and without		OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	positive	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	negative	yeast cytogenetic assay	with and without		OECD Guideline 481 (Genetic Toxicology: Saccharomyces cerevisiae, Mitotic Recombination Assay)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 472 (Genetic Toxicology: Escherichia coli, Reverse Mutation Assay)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	positive	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
4,4'- Isopropylidenediphenol 80-05-7	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		not specified
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	negative	oral: gavage		mouse	not specified
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	positive	oral: gavage		mouse	OECD Guideline 488 (In Vivo Transgenic Cell Gene Mutation Assays)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	negative	oral: gavage		mouse	not specified
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	negative	oral: gavage		mouse	OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	negative	oral: gavage		rat	OECD Guideline 486 (Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo)

Carcinogenicity

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous components CAS-No.	Result	Route of application	Exposure time / Frequency of treatment	Species	Sex	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	not carcinogenic	dermal	2 y daily	mouse	male	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	not carcinogenic	oral: gavage	2 y daily	rat	male/female	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	not carcinogenic	dermal	2 y daily	mouse	male	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	not carcinogenic	oral: gavage	2 y daily	rat	male/female	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)

Reproductive toxicity:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result / Value	Test type	Route of application	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) 25068-38-6	NOAEL P >= 50 mg/kg NOAEL F1 >= 750 mg/kg NOAEL F2 >= 750 mg/kg	Two generation study	oral: gavage	rat	OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	NOAEL P >= 50 mg/kg NOAEL F1 >= 750 mg/kg NOAEL F2 >= 750 mg/kg	Two generation study	oral: gavage	rat	OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	NOAEL P > 750 mg/kg NOAEL F1 750 mg/kg NOAEL F2 750 mg/kg	two- generation study	oral: gavage	rat	OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)
4,4'- Isopropylidenediphenol 80-05-7	NOAEL P 300 ppm		oral: feed	mouse	OECD Guideline 416 (Two- Generation Reproduction Toxicity Study)

STOT-single exposure:

No data available.

STOT-repeated exposure:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result / Value	Route of application	Exposure time / Frequency of treatment	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	NOAEL 50 mg/kg	oral: gavage	14 w daily	rat	OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity in Rodents)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)] bisoxirane 1675-54-3	NOAEL 50 mg/kg	oral: gavage	14 w daily	rat	OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity in Rodents)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	NOAEL 250 mg/kg	oral: gavage	13 w daily	rat	OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity in Rodents)

Aspiration hazard:

No data available.

11.2 Information on other hazards

not applicable

SECTION 12: Ecological information

General ecological information:

Do not empty into drains / surface water / ground water.

12.1. Toxicity

Toxicity (Fish):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	LC50	1,75 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish, Acute Toxicity Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	LC50	9,61 mg/l	96 h	Oncorhynchus mykiss	EPA OTS 797.1400 (Fish Acute Toxicity Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	LC50	1,2 mg/l	96 h	Oncorhynchus mykiss	EPA-660 (Methods for Acute Toxicity Tests with Fish, Macroinvertebrates and Amphibians)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	LC50	5,7 mg/l	96 h	Ide, silver or golden orfe (Leuciscus idus)	OECD Guideline 203 (Fish, Acute Toxicity Test)
2,2'-[methylenebis(p- phenyleneoxymethylene)]biso xirane 2095-03-6	LC50	> 1 - 10 mg/l	96 h	not specified	OECD Guideline 203 (Fish, Acute Toxicity Test)
4,4'-Isopropylidenediphenol 80-05-7	LC50	4,6 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish, Acute Toxicity Test)
4,4'-Isopropylidenediphenol 80-05-7	LOEC	0,000372 mg/l	300 d	Danio rerio	OECD Guideline 234 (Fish Sexual Development Test)

Toxicity (Daphnia):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value	Value	Exposure time	Species	Method
CASTIO. CASTION CAS	EC50	1,7 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	EC50	4,8 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	EC50	2,7 mg/l	48 h	Daphnia magna	other guideline:
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	EC50	3,5 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
2,2'-[methylenebis(p- phenyleneoxymethylene)]biso xirane 2095-03-6	EC50	> 1 - 10 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
4,4'-Isopropylidenediphenol 80-05-7	EC50	0,885 mg/l	48 h	Acartia clausi	other guideline:

Chronic toxicity to aquatic invertebrates

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
01-01101	NOEC	0,3 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	NOEC	0,3 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	NOEC	0,3 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
4,4'-Isopropylidenediphenol 80-05-7	LOEC	0,00025 mg/l	150 d	Marisa cornuarietis	other guideline:

Toxicity (Algae):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight < 700)	EC50	> 11 mg/l	72 h	Scenedesmus capricornutum	OECD Guideline 201 (Alga, Growth Inhibition Test)
25068-38-6					
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	NOEC	4,2 mg/l	72 h	Scenedesmus capricornutum	OECD Guideline 201 (Alga, Growth Inhibition Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	NOEC	1 mg/l	96 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	EC50	2,9 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	EC50	> 11 mg/l	72 h	Scenedesmus capricornutum	other guideline:
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	NOEC	4,2 mg/l	72 h	Scenedesmus capricornutum	other guideline:
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	EC50	9,4 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
4,4'-Isopropylidenediphenol 80-05-7	EC50	3,73 mg/l	96 h	other:	OECD Guideline 201 (Alga, Growth Inhibition Test)
4,4'-Isopropylidenediphenol 80-05-7	EC10	2,1 mg/l	72 h	Raphidocelis subcapitata (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)

Toxicity to microorganisms

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	IC50	> 100 mg/l	3 h	activated sludge, industrial	other guideline:
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	EC 50	> 100 mg/l			OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	IC50	> 100 mg/l	3 h	activated sludge, industrial	other guideline:
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	IC50	> 100 mg/l	3 h	activated sludge	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
4,4'-Isopropylidenediphenol 80-05-7	EC10	> 320 mg/l	18 h	Pseudomonas putida	DIN 38412, part 8 (Pseudomonas Zellvermehrungshemm- Test)

12.2. Persistence and degradability

Hazardous substances CAS-No.	Result	Test type	Degradability	Exposure time	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight≤700) 25068-38-6	not readily biodegradable.	aerobic	5 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	under test conditions no biodegradation observed	aerobic	7 - 8 %	28 d	OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	not readily biodegradable.	aerobic	5 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	not readily biodegradable.	aerobic	5 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
2,2'-[methylenebis(p- phenyleneoxymethylene)]biso xirane 2095-03-6	not readily biodegradable.	aerobic	< 10 %	28 d	OECD 301 A - F
4,4'-Isopropylidenediphenol 80-05-7	readily biodegradable	aerobic	89 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)

12.3. Bioaccumulative potential

Hazardous substances	Bioconcentratio	Exposure time	Temperature	Species	Method
CAS-No.	n factor (BCF)				
RP Bisphenol F-	31			not specified	not specified
epichlorohydrin resin,					
MW<=700					
28064-14-4					
4,4'-Isopropylidenediphenol	5,1 - 67	42 d	25 °C	Cyprinus carpio	other guideline:
80-05-7					

12.4. Mobility in soil

Hazardous substances CAS-No.	LogPow	Temperature	Method
reaction product: bisphenol-A- (epichlorhydrin); epoxy resin (number average molecular weight \(\frac{5}{100} \) 25068-38-6	3,242	25 °C	EU Method A.8 (Partition Coefficient)
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	4,4	20 °C	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)
2,2'-[(1- Methylethylidene)bis(4,1- phenyleneoxymethylene)]biso xirane 1675-54-3	> 2,64 - 3,78	25 °C	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)
RP Bisphenol F- epichlorohydrin resin, MW<=700 28064-14-4	3,242		OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)
4,4'-Isopropylidenediphenol 80-05-7	3,4	21,5 °C	OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method)

12.5. Results of PBT and vPvB assessment

Hazardous substances	PBT / vPvB
CAS-No.	
reaction product: bisphenol-A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) 25068-38-6	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Neodecanoic acid, oxiranylmethyl ester 26761-45-5	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
2,2'-[(1-Methylethylidene)bis(4,1- phenyleneoxymethylene)]bisoxirane 1675-54-3	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
4,4'-Isopropylidenediphenol 80-05-7	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.

12.6. Endocrine disrupting properties

not applicable

12.7. Other adverse effects

No data available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Product disposal:

Dispose of in accordance with local and national regulations.

Do not empty into drains / surface water / ground water.

Disposal of uncleaned packages:

After use, tubes, cartons and bottles containing residual product should be disposed of as chemically contaminated waste in an authorised legal land fill site or incinerated.

Waste code

 $08\ 04\ 09*$ waste adhesives and sealants containing organic solvents and other dangerous substances

The valid EWC waste code numbers are source-related. The manufacturer is therefore unable to specify EWC waste codes for the articles or products used in the various sectors. The EWC codes listed are intended as a recommendation for users. We will be happy to advise you.

SECTION 14: Transport information

14.1. UN number or ID number

ADR	3082
RID	3082
ADN	3082
IMDG	3082
IATA	3082

14.2. UN proper shipping name

ADR ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(Bisphenol-A Epichlorhydrin resin)

RID ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(Bisphenol-A Epichlorhydrin resin)

ADN ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(Bisphenol-A Epichlorhydrin resin)

IMDG ENVIRONMENTALLÝ HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(Bisphenol-A Epichlorhydrin resin)

IATA Environmentally hazardous substance, liquid, n.o.s. (Bisphenol-A Epichlorhydrin

resin)

14.3. Transport hazard class(es)

ADR	ç
RID	9
ADN	ç
IMDG	9
IATA	C

14.4. Packing group

ADR	III
RID	III
ADN	III
IMDG	III
IATA	III

14.5. Environmental hazards

ADR	not applicable
RID	not applicable
ADN	not applicable
IMDG	Marine pollutant
IATA	not applicable

14.6. Special precautions for user

ADR	not applicable
	Tunnelcode:
RID	not applicable
ADN	not applicable
IMDG	not applicable
IATA	not applicable

The transport classifications in this section apply generally to packed and bulk goods alike. For containers with a net volume of no more than 5 L for liquid substances or a net mass of no more than 5 kg for solid substances per individual or inner package, the exemptions SP 375 (ADR), A197 (IATA), 2.10.2.7 (IMDG) may be applied, which can result in a deviation from the transport classification for packed goods.

14.7. Maritime transport in bulk according to IMO instruments

not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Ozone Depleting Substance (ODS) (Regulation (EC) No 1005/2009): Not applicable Prior Informed Consent (PIC) (Regulation (EU) No 649/2012): Not applicable Persistent organic pollutants (Regulation (EU) 2019/1021): Not applicable

VOC content < 3,00 %

(2010/75/EC)

15.2. Chemical safety assessment

A chemical safety assessment has not been carried out.

National regulations/information (Germany):

WGK: WGK 2: significantly water endangering (Ordinance on facilities for handling

substances that are hazardous to water (AwSV)) Classification according to AwSV, Annex 1 (5.2)

Storage class according to TRGS 510: 10

SECTION 16: Other information

The labelling of the product is indicated in Section 2. The full text of all abbreviations indicated by codes in this safety data sheet are as follows:

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H318 Causes serious eye damage.

H319 Causes serious eye irritation.

H335 May cause respiratory irritation.

H341 Suspected of causing genetic defects.

H360F May damage fertility.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

H411 Toxic to aquatic life with long lasting effects.

ED: Substance identified as having endocrine disrupting properties

EU OEL:

EU EXPLD 1:

Substance with a Union workplace exposure limit

EU EXPLD 1:

Substance listed in Annex I, Reg (EC) No. 2019/1148

EU EXPLD 2

Substance listed in Annex II, Reg (EC) No. 2019/1148

SVHC:

Substance of very high concern (REACH Candidate List)

PBT:

Substance fulfilling persistent, bioaccumulative and toxic criteria

PBT/vPvB: Substance fulfilling persistent, bioaccumulative and toxic plus very persistent and very

bioaccumulative criteria

vPvB: Substance fulfilling very persistent and very bioaccumulative criteria

Further information:

This Safety Data Sheet has been produced for sales from Henkel to parties purchasing from Henkel, is based on Regulation (EC) No 1907/2006 and provides information in accordance with applicable regulations of the European Union only. In that respect, no statement, warranty or representation of any kind is given as to compliance with any statutory laws or regulations of any other jurisdiction or territory other than the European Union. When exporting to territories other than the European Union, please consult with the respective Safety Data Sheet of the concerned territory to ensure compliance or liaise with Henkel's Product Safety and Regulatory Affairs Department (SDSinfo.Adhesive@henkel.com) prior to export to other territories than the European Union.

This information is based on our current level of knowledge and relates to the product in the state in which it is delivered. It is intended to describe our products from the point of view of safety requirements and is not intended to guarantee any particular properties.

Dear Customer,

Henkel is committed to creating a sustainable future by promoting opportunities along the entire value chain. If you would like to contribute by switching from a paper to the electronic version of SDS, please contact the local Customer Service representative. We recommend to use a non-personal email address (e.g. SDS@your_company.com).

Relevant changes in this safety data sheet are indicated by vertical lines at the left margin in the body of this document. Corresponding text is displayed in a different color on shadowed fields.